Condition Numbers for Structured Least Squares Problems

نویسندگان

  • W. XU
  • Y. WEI
  • S. QIAO
چکیده

This paper studies the normwise perturbation theory for structured least squares problems. The structures under investigation are symmetric, persymmetric, skewsymmetric, Toeplitz and Hankel. We present the condition numbers for structured least squares. AMS subject classification (2000): 15A18, 65F20, 65F25, 65F50.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Accurate Solution of Structured Least Squares Problems via Rank-Revealing Decompositions

Least squares problems minx ‖b−Ax‖2 where the matrix A ∈ Cm×n (m ≥ n) has some particular structure arise frequently in applications. Polynomial data fitting is a well-known instance of problems that yield highly structured matrices, but many other examples exist. Very often, structured matrices have huge condition numbers κ2(A) = ‖A‖2 ‖A†‖2 (A† is the Moore-Penrose pseudo-inverse ofA) and, the...

متن کامل

On perturbations of linear least squares problems

The asymptotic behaviour of a class of least squares problems when subjected to structured perturbations is considered. It is permitted that the number of rows (observations) in the design matrix can be unbounded while the number of degrees of freedom (variables) is fixed. It is shown that for certain classes of random data the solution sensitivity depends asymptotically on the condition number...

متن کامل

On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems

Classical condition numbers are normwise: they measure the size of both input perturbations and output errors using some norms. To take into account the relative of each data component, and, in particular, a possible data sparseness, componentwise condition numbers have been increasingly considered. These are mostly of two kinds: mixed and componentwise. In this paper, we give explicit expressi...

متن کامل

The structured sensitivity of Vandermonde-like systems

We consider a general class of structured matrices that includes (possibly confluent) Vandermonde and Vandermonde-like matrices. Here the entries in the matrix depend nonlinearly upon a vector of parameters. We define condition numbers that measure the componentwise sensitivity of the associated primal and dual solutions to small componentwise perturbations in the parameters and in the right-ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006